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Stimuli-responsive nanocarriers for drug delivery

Simona Mura, Julien Nicolas and Patrick Couvreur*

Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-,
temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocom-
patible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a
protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in
the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stim-
uli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous

(changes in pH, enzyme concentration or redox gradients).

received tremendous attention, in particular from the field
of nanomedicine. The need for drug nanocarriers that effi-
ciently target diseased areas in the body arises because drug efficacy
is often altered by nonspecific cell and tissue biodistribution, and
because some drugs are rapidly metabolized or excreted from the
body. Owing to impressive progress in materials science and phar-
maceutics, a broad range of nanocarriers with diverse sizes, archi-
tectures and surface properties have been designed. These include
liposomes, polymer nanoparticles, micelles, dendrimers, and
inorganic nanoparticles made of iron oxide, quantum dots, gold
or metal oxide frameworks. The size of these carriers is typically
small (from a few tenths to a few hundreds of nanometres) to allow
systemic (intravenous) or local (mucosal) administration, and to
promote their diffusion within the cell. Moreover, current surface-
functionalization methodologies can impart nanocarriers with the
ability to control, at least in part, their pharmacokinetics and bio-
distribution. For example, the PEGylation (the process of attach-
ing polyethylene glycol (PEG) chains)-induced steric repulsion
of blood opsonins — molecules, such as antibodies, that enhance
phagocytosis — endows the nanocarriers with in vivo longevity
and specific capability of extravasation through the endothelium
of inflammatory tissues (the so-called enhanced permeability and
retention effect), whereas their functionalization with biologically
active ligands facilitates the targeting of specific cells.
Nanotechnology-based targeted delivery has shown promis-
ing results in preclinical animal models. However, the translation
of both the enhanced permeability and retention effect and ligand
recognition into the clinic still remains questionable. This may be,
to a certain extent, a consequence of the stochastic nature of ligand-
receptor interactions and of difficulties in the control of the release
of the drug from targeting nanocarriers. In fact, Fickian diffusion —
which governs the leakage of the drug — is not specific to cells,
tissues or organs; therefore, more efficient delivery strategies are
needed. One alternative involves on-demand processes (also termed
‘switch on/off”), which in principle allow for tailored release profiles
with excellent spatial, temporal and dosage control. On-demand
drug delivery is becoming feasible through the design of stimuli-
responsive systems that recognize their microenvironment and
react in a dynamic way, mimicking the responsiveness of living
organisms. However, this approach is rather complex. It requires
the use of biocompatible materials that are able to undergo a spe-
cific protonation, a hydrolytic cleavage, or a molecular or supramo-
lecular conformational change in response to a desired stimulus,
or that are susceptible to specific physical stimulation. The concept
of stimuli-responsive drug delivery was first suggested in the late
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1970s with the use of thermosensitive liposomes for the local release
of drugs through hyperthermia'. Since then — and particularly in
the past decade — a great deal of research has been carried out on
stimuli-responsive materials for drug delivery, especially concern-
ing their design and application as nanocarriers.

Nanoscale stimuli-responsive devices may be sensitive to spe-
cific endogenous stimuli, such as a lowered interstitial pH, a higher
glutathione concentration or an increased level of certain enzymes
such as matrix metalloproteinases. At the cellular level, pH sensitiv-
ity can either trigger the release of the transported drug into late
endosomes or lysosomes, or promote the escape of the nanocarriers
from the lysosomes to the cell cytoplasm. At the tissue level, one can
take advantage of specific microenvironmental changes associated
with neoplastic diseases (the treatment of which is the focus of most
of the research effort on stimuli-responsive nanocarriers) as well
as pathological situations such as ischemia, inflammatory diseases
or infections. Extracorporeal physical stimuli can be also applied.
For example, the targeted delivery of pharmacologically active mol-
ecules to a diseased area in the body can be magnetically guided
by using ultrasmall iron oxide-based nanoparticles. Sustained drug
release can also be achieved by thermo-, light- or ultrasound-sensi-
tive nanoparticulate systems. Furthermore, the possibility of choos-
ing between different routes of administration (intravenous, oral,
ocular or mucosal) is attractive.

In this Review, we discuss the most significant progress made in
the past five years in the field of stimuli-responsive drug-delivery
nanocarriers. In the interest of brevity, we do not include stimuli-
sensitive transported drugs, or single prodrugs or nanocarriers for
which drug-release evidence has yet to be reported.

Exogenous stimuli-responsive drug delivery

In this section we discuss drug-delivery systems that take advantage
of externally applied stimuli, including temperature changes, mag-
netic fields, ultrasounds, light and electric fields.

Thermoresponsive systems. Thermoresponsive drug delivery is
among the most investigated stimuli-responsive strategies, and has
been widely explored in oncology. Thermoresponsiveness is usu-
ally governed by a nonlinear sharp change in the properties of at
least one component of the nanocarrier material with temperature.
Such a sharp response triggers the release of the drug following
a variation in the surrounding temperature. Ideally, thermosen-
sitive nanocarriers should retain their load at body temperature
(~37 °C), and rapidly deliver the drug within a locally heated
tumour (~40-42 °C) to counteract rapid blood-passage time and
washout from the tumour.

Institut Galien Paris-Sud, Université Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Chatenay-Malabry Cedex,

France. *e-mail: patrick.couvreur@u-psud.fr

NATURE MATERIALS | VOL 12 | NOVEMBER 2013 | www.nature.com/naturematerials

991

© 2013 Macmillan Publishers Limited. All rights reserved


mailto:patrick.couvreur@u-psud.fr
http://www.nature.com/doifinder/10.1038/nmat3776

REVIEW ARTICLES | INSIGHT

NATURE MATERIALS boi:101038/NMAT3776

a Leucine zipper peptide

(folded conformation)

T=43°C

T=40°C

NH,HCO

Leucine zipper peptide
(unfolded conformation)

+H,0

27

— NH

3 (aq)

+CO,

3 (aq)

Figure 1| Temperature-based actuation mechanisms for liposomal drug delivery. a, The temperature-triggered unfolding of a leucine zipper peptide
inserted in the membrane of a doxorubicin (Dox)-carrying liposome opens a channel through which the drug is released. b, Drug-permeable pores can
also be created by the temperature-triggered generation of bubbles from the decomposition of encapsulated ammonium bicarbonate. Figure adapted with

permission from: a, ref. 3, © 2012 ACS; b, ref. 4, © 2013 ACS.

Thermoresponsive systems are generally liposomes, or polymer
micelles or nanoparticles (usually poly(N-isopropyl acryla-
mide), PNIPAM) that exhibit a lower critical solution tempera-
ture. For liposomes, thermoresponsiveness usually arises from
a phase transition of the constituent lipids and the associated
conformational variations in the lipid bilayers. In vivo, heat is gen-
erally applied by using temperature-controlled water sacks, radiof-
requency oscillators or miniature annular-phased array microwave
applicators. In the past few years, the focus has been on rapid and
quantitative drug-release performance. Thermosensitive liposomes
(TSLs) are perhaps the most advanced thermoresponsive nanosys-
tems, as shown by their use in several clinical trials. Doxorubicin-
loaded TSLs (ThermoDox, Celsion Corporation), in association
with hyperthermia or radiofrequency ablation, are at present being
investigated in phase II trials for the treatment of breast cancer and
colorectal liver metastasis, and reached phase III trials for the treat-
ment of hepatocellular carcinoma. More recently, improved liposo-
mal formulations have been shown to release their loads shortly after
the onset of hyperthermia (~40-45 °C)%. An alternative approach
used leucine zipper peptide-liposome hybrids, which combine
the advantages of traditional TSLs with the dissociative, unfolding
properties of a temperature-sensitive peptide (Fig. 1a)’. Also prom-
ising are thermoresponsive bubble-generating liposomal systems.
These rely on the creation of permeable defects in the lipid bilayer by
means of the generation of carbon dioxide bubbles through decom-
position of ammonium bicarbonate at mild hyperthermia (~42 °C).
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Interestingly, because of the hyperechogenic features of carbon
dioxide bubbles, bubble-generating liposomal vesicles that rapidly
release doxorubicin (Fig. 1b)* also improved ultrasound imaging of
tissues. Thermosensitive liposomes can also be functionalized with
ligands for specific targeting, such as the human epidermal growth
factor receptor 2 affibody for breast-cancer treatment®.

Although PNIPAM is the preferred polymer building block for
thermosensitive polymeric drug nanocarriers®, other polymeric
materials, such as poly(y-2-(2-(2-methoxyethoxy)-ethoxy)ethoxy-
e-caprolactone)-b-poly(y-octyloxy-e-caprolactone)’, have demon-
strated marked transition temperatures, allowing improved drug
release at low hyperthermia (40 °C). Importantly, tuning the nature
and the composition of the copolymers so that transition tempera-
tures are close to body temperature may be useful for local admin-
istration (either subcutaneous, or intra- or peritumoural).

Local hyperthermia has also been used as a stimulus for the
on-off control of the activity of cell-penetrating peptides (CPP). In
this case, the temperature-triggered assembly of diblock-copolymer
elastin-like polypeptides allowed arginine residues to be displayed
at the periphery of the resulting micelles. This resulted in a greater
than 8-fold increase in HeLa-cell uptake®.

Thermoresponsiveness can also occur on a brief temperature
decrease (also called cold shock or cryotherapy). In this case, a
thermally reversible swelling or de-swelling of the nanocarrier
leads to free diffusion of the encapsulated drugs as a consequence of
increased porosity. For example, Pluronic F127-polyethyleneimine

NATURE MATERIALS | VOL 12 | NOVEMBER 2013 | www.nature.com/naturematerials

Limited. All rights reserved


http://www.nature.com/doifinder/10.1038/nmat3776
http://www.nature.com/doifinder/10.1038/nmat3776

NATURE MATERIALS boi:10.1038/NMAT3776

INSIGHT | REVIEW ARTICLES

Nanovalve
“HN

3

MSNP Temy:k Y

Silica

Capping

(0]

o.-:- J]\
Loading =N N
—

Y

¢]

o0
Zn-doped
Fe;0,
nanocarriers

pzd

AMF
-—
500 kHz

Cucurbit[6]uril

MSNP

oels
®

—_—
Loading

MSNP

Magnetic
Capping nanoparticle

DNA

b AMF
-—
100 kHz

Figure 2 | Actuation mechanisms based on the heat generated by an alternating magnetic field (AMF) leading to on-demand pulsatile drug release from
mesoporous silica nanoparticles (MSNPs). a, Pseudorotaxane-based nanovalves made of cucurbit[6]uril. b, Capping system based on complementary
DNA sequences. Figure adapted with permission from: a, ref. 34, © 2010 ACS; b, ref. 36, © 2011 ACS.

(PEI) nanocapsules were used for efficient small interfering RNA
(siRNA) delivery into the cytosol and subsequent silencing of a
target messenger RNA”.

In general, the challenge in the design of thermoresponsive
nanodevices lies in the use of materials that are both safe and sen-
sitive enough to respond to slight temperature changes around
the physiological temperature of 37 °C. Liposomal systems are at
present the more advanced and thus have the highest potential for
clinical applications.

Magnetically responsive systems. The advantage of using a mag-
netic field relies on the different nature that the magnetic response
can take, which can be a magnetic guidance under a permanent
magnetic field, a temperature increase when an alternating mag-
netic field is applied, or both when alternately used. Therefore,
magnetically responsive systems allow for diversity in the drug-
delivery pathway. Furthermore, there is the possibility of per-
forming magnetic resonance imaging, and hence to associate
diagnostics and therapy within a single system (the so-called thera-
nostic approach)™.

Magnetic guidance is typically obtained by focusing an extracor-
poreal magnetic field on the biological target during the injection
of a magnetically responsive nanocarrier. This concept has dem-
onstrated great potential in experimental cancer therapy because
of improved drug accumulation inside solid-tumour models.
Candidate nanosystems for such a therapeutic approach are core-
shell nanoparticles (a magnetic core made of magnetite (Fe,O,)
coated with silica or polymer)''"?, magnetoliposomes (Fe,O, or
maghemite (Fe,O,) nanocrystals encapsulated in liposomes)** and
porous metallic nanocapsules'. Most core-shell nanoparticles have
shown promising results in vitro, yet only some of them have dem-
onstrated improved tumour accumulation and anticancer phar-
macological efficacy in various in vivo models. However, without
normalized benchmark experiments, the comparison between all
these systems remains rather difficult.
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To avoid limitations related to physical drug entrapment (for
instance, uncontrolled burst release or poor drugloading), the drugs
and the nanocarriers can be covalently linked'>. For example,
Fe,O, nanocrystals loaded into squalene-gemcitabine conjugate
nanoassemblies exhibiting high drug payloads have demonstrated
absence of burst release, enhancement of the magnetic resonance
imaging contrast in the targeted L1210 solid-tumour nodule and
significant therapeutic efficacy'.

Interestingly, a permanent magnetic field can also trigger drug
delivery. For instance, when applied to a ferrogel composed of
Pluronic-F127 micelles encapsulating superparamagnetic iron
oxide nanoparticles and a hydrophobic drug, the drug is released
as iron oxide nanoparticles approach each other and squeeze the
micelles’. Similarly, a syringe-like system using magnetic nanopar-
ticles can push the drug out of a biodegradable reservoir based on
poly(r-lactic acid)".

Magnetically guided nanocarriers have also found applica-
tion in the delivery of nucleic acids, including siRNA and genes.
Such magnetofection experiments are generally performed using
nanoassemblies with cationic coatings to condense nucleic acids,
which results in higher transfection efficiencies under a permanent
magnetic field. For instance, this technique led to improved effec-
tiveness in the transfection of siRNA in vitro and/or in vivo when
directed against prostate’® and breast' cancers, as well as in the
gene transfer to oligodendrocyte precursors for neural repair®. For
DNA vaccine delivery, two different strategies have been successful:
the complexation of plasmid DNA (pDNA) at the surface of PEI-
coated Fe,O, nanoparticles”, and the use of bacterial magnetic par-
ticles as carriers of a recombinant DNA?. Magnetic vaccines have
also been demonstrated in the form of magnetic-nanoparticle for-
mulations associated to a replication-defective adenovirus®. Cell-
based gene therapies employing human monocytes — cells that
naturally migrate from the bloodstream into tumours — that were
transfected with therapeutic genes, loaded with magnetic nanopar-
ticles and placed under the influence of a magnetic field led to a
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Figure 3 | Drug delivery from echogenic perfluorocarbon (PFC)-containing
nanoemulsions. It is believed that the mechanism of delivery involves a
droplet-to-bubble transition under the action of ultrasound, leading to

drug transfer from the bubbles to neighbouring cells. Figure adapted with
permission from ref. 41, © 2009 Elsevier.

marked increase in the monocytes’ extravasation into the tumour?.
Magnetic nanoparticles have also been used for the delivery of anti-
oxidant enzymes (catalase and superoxide dismutase, for example)
with the aim of increasing resistance to oxidative stress in vitro®.

When magnetic nanoparticles are placed in an oscillating or
alternating magnetic field (AMF), because of hysteresis loss and/or
Neéel relaxation, they serve as a transducer by generating heat in the
surrounding medium; therefore, they have been extensively used
for the selective heating of tumours (hyperthermia). However, by
combining this phenomenon with the particular physical and/or
chemical properties of organic and inorganic nanocarriers, a broad
range of actuation mechanisms for on-demand drug release has
been developed. Typical examples are the use of thermosensitive
polymers® and lipids?, which can serve as coating materials for
magnetic nanoparticles and trigger the release of a drug in an on-oft
fashion in response to a magnetically induced increase of tempera-
ture. This can also be achieved with crosslinked PNIPAM hydrogels
loaded with Fe,O, nanoparticles®. The release of the encapsulated
drug can be modulated by the duration of the AMF on-off states,
which affects the shrinkage of the mesh size and the recovery of
the gel. The heat generated by an AMF can also trigger nanocarrier
structural alteration, such as shell or bilayer porosity increase®-,
disintegration of the Fe,O, core®, or single-crystal nanoshell lattice
deformation®. Furthermore, active targeting by means of nano-
carrier functionalization can be combined with hyperthermia to
achieve a synergistic cytotoxic effect®.

The heat generated by an AMF can also be used to achieve on-
demand pulsatile drug release. Examples include: pseudorotaxane-
based nanovalves at the surface of mesoporous silica nanoparticles
(MSNPs) that act as thermally sensitive gatekeepers (Fig. 2a)**; com-
posite membranes containing thermoresponsive PNIPAM-based
nanogels and magnetic nanoparticles that enable on-off drug deliv-
ery on de-swelling or swelling of the polymer™®; a capping system
for drug-loaded MSNPs based on complementary DNA sequences
(Fig. 2b)*; and a nucleic-acid duplex as a heat-labile linker that
releases a drug from dextran-coated Fe,O, magnetic nanoparticles
embedded into a matrigel plug®”. An AMF can also remotely regu-
late protein production by using a modified temperature-sensitive
channel (TRPV1) decorated with iron oxide nanoparticles®. When
the local temperature rises, TRPV1 gates calcium to stimulate the
production and release of bioengineered insulin driven by a Ca?*-
sensitive promoter.

The use of magnetically responsive nanoparticles, either for mag-
netic guidance or local hyperthermia, is generally limited to acces-
sible tumour nodules, but not metastasis or disseminated tumours.
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Even if most of these tumours are indications for direct surgery,
some are not surgically removable because they are too haemor-
rhagic or localized in tissues with high risk of healthy-tissue injury
(as is the case for some brain cancers). In these situations, magneti-
cally responsive nanoparticles represent a promising therapeutic
option. However, magnetic guidance is hampered by the complex-
ity involved in the set-up of external magnetic fields, which need
adequate focusing and deep penetration into the tissues to reach
the diseased area with sufficient strength. In this respect, efforts to
identify the best magnetic and irradiation technologies are needed.

Ultrasound-triggered drug delivery. Ultrasounds represent an
effective method for attaining spatiotemporal control of drug
release at the desired site, thus preventing harmful side effects to
healthy tissues. The use of ultrasounds is also appealing because of
their non-invasiveness, the absence of ionizing radiations, and the
facile regulation of tissue penetration depth by tuning frequency,
duty cycles and time of exposure.

Ultrasound waves can trigger the release of the drug from a vari-
ety of nanocarriers through the thermal and/or mechanical effects
generated by cavitation phenomena or radiation forces. Indeed, it
has been shown that physical forces associated with cavitation can
induce nanocarrier destabilization, drug release® and transient
increase in vessel permeability, leading to the cellular uptake of
therapeutic molecules®.

The cavitation threshold is easily achieved when low ultrasound
frequencies (in the kHz range) are used. However, ultrasound-
mediated enhancement of vessel permeability can also be the cause
of possible drawbacks such as metastatic dissemination. Therefore,
microbubbles or other ultrasound contrast agents, which are able
to efficiently interact with ultrasonic waves, have been used at diag-
nostic frequencies to reduce the threshold required for cavitation.
However, short lifespan and absence of extravasation may still limit
the use of microbubbles for tissue targeting. This difficulty has been
overcome by the development of perfluorocarbon (PFC) nanoemul-
sions that convert into microbubbles under the action of therapeu-
tic ultrasounds. The bubbles are formed through acoustic droplet
vaporization and are subjected to cavitation, thus promoting cel-
lular uptake and/or release of the entrapped drugs in the tumour
site (Fig. 3). This has resulted in significant therapeutic efficacy and
suppression of metastatic dissemination*'. Moreover, functionaliza-
tion with aptamers has increased the targeting specificity of PFC
nanodroplets*2. Low-frequency ultrasounds have also been used to
promote the delivery of drugs through the skin. For example, high
penetration of siRNA-loaded liposomes has led to significant inhi-
bition of the progression of melanocytic lesions®.

Furthermore, echogenic liposomes — also termed bubble
liposomes — contain air pockets or nanoemulsions of liquid PFC*
and can integrate ultrasound responsiveness into a drug nanocar-
rier. In fact, a combination of ultrasounds and intravenous admin-
istration of xenon-loaded bubble liposomes achieved a significant
neuroprotective effect in a model of cerebral ischemia*. Bubble
liposomes increased the transfection efficiency of pDNA-loaded
liposomes, probably also by enhancing ultrasound-mediated
endosomal escape®. However, co-localization of pDNA and bub-
ble liposomes is needed in vivo to attain high transfection efficacy.
Indeed, intravenous administration of bubble liposomes loaded
with the basic fibroblast growth factor gene resulted in significant
gene delivery at the ultrasound-focused site*. Systemic administra-
tion of pDNA-loaded bubble liposomes and ultrasound exposure
also achieved prolonged cancer vaccination*. Compared with other
approaches, ultrasound-triggered drug delivery allows the drug to
be released into the cytosol as a result of pore formation in the cell
membrane, thus bypassing the degradative endocytotic pathway.
This is especially useful in DNA transfection.
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Combination of thermosensitive drug carriers and high-intensity
focused ultrasound (HIFU) enables triggered drug release with
only a mild temperature increase. For instance, inducing the release
of doxorubicin from TSLs by using a clinically available HIFU
material resulted in higher drug accumulation in an experimental
tumour animal model compared with non-irradiated controls®.
The combination of HIFU and ThermoDox is under investigation
at Celsion Corporation for the treatment of liver metastatic cancer,
painful bone metastasis and pancreatic cancer.

Light-triggered drug delivery. Owing to their non-invasiveness
and the possibility of remote spatiotemporal control, a large vari-
ety of photoresponsive systems has been engineered in the past
few years to achieve on-demand drug release in response to illu-
mination of a specific wavelength (in the ultraviolet, visible or
near-infrared (NIR) regions). The different strategies available rely
on either a one-time or repeatable on-oft drug-release event trig-
gered by photosensitiveness-induced structural modifications of
the nanocarriers.

For instance, the ultraviolet-visible reversible photoisomeriza-
tion of the azobenzene group (and its derivatives) — from trans to
cis on irradiation at 300-380 nm, and from cis to trans by shining
light in the visible region — enables photoregulated control of drug
release. This has been achieved through azobenzene functionali-
zation of the pore interior of MSNPs*, by means of azo-modified
DNA valves at the pore mouth®, and by the light-controlled host-
guest recognition between a cyclodextrin cavity and azobenzene
derivatives®. The hydrophobic-hydrophilic transition that accom-
panies the trans—cis photoisomerization can also be used. For
example, the disassembly at ultraviolet light of 350 nm that occurs
for cationic micelles of azo-modified surfactants can initiate rapid
intracellular DNA release®. Another strategy for obtaining nano-
particles with photoswitchable drug release in illuminated cells is to
take advantage of the ultraviolet light-triggered spiropyran-mero-
cyanine isomerization. Ultraviolet light can also activate revers-
ible shrinkage in spiropyran-PEGylated lipid nanoparticles, thus
enabling deeper tissue penetration®. Furthermore, the photodi-
merization—cleavage cycle of thymine can serve as a mechanism
for MSNP opening and closing®, although other photocleavable
groups, such as o-nitro benzyl and its derivatives, have also been
tested. Controlled drug release has been achieved with o-nitro ben-
zyl attached to gold nanoparticles as a linker for the direct conjuga-
tion of drugs®, as part of MSNP gatekeeper mechanisms®, and as a
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crosslinker incorporated in the backbone of polymers®. Photolabile
caging groups have been exploited for the light-activated produc-
tion of proteins. Lipid vesicles loaded with caged DNA and with the
reacting and enzymatic components needed for transcription and
translation enabled, upon local ultraviolet irradiation-mediated
DNA uncaging, the activation of green fluorescent protein and the
synthesis of enzymatically active luciferase (Fig. 4a)*.

The major drawback of light-triggered drug delivery is the low
penetration depth (~10 mm) that results from the strong scat-
tering properties of soft tissues in the ultraviolet-visible region
of the spectrum (less than 700 nm). Conventional light-induced
drug delivery is thus only applicable to regions of the body that
can be directly illuminated (such as the eye or the skin). However,
by using photosensitive groups that respond to higher wavelengths
or exploiting two-photon technology®, it is possible to replace
the ultraviolet-visible light source by a NIR laser (700-1,000 nm
range) with deeper tissue penetration, lower scattering proper-
ties and minimal harm to tissues. This makes NIR-responsive
systems extremely promising for clinical applications. The capac-
ity of NIR-absorbing plasmonic materials to convert the photon
energy adsorbed during irradiation into heat has been used to
trigger the release of chemotherapeutic molecules from NIR-
responsive nanodevices. For instance, doxorubicin-loaded hollow
gold nanospheres showed accelerated drug release when irradiated
at 808 nm, allowing enhanced anticancer activity and reduced sys-
temic toxicity compared with the free-drug treatment®'. Light-to-
heat transduction mediated by NIR irradiation of gold nanorods
caused a rapid rise in the local temperature, which was exploited
to induce dehybridization of DNA helices conjugated at the gold
surface, allowing the release of doxorubicin molecules bound to
consecutive cytosine-guanine base pairs (Fig. 4b)®% Alternatively,
DNA duplexes can be used to cap the pores of a mesoporous silica
shell, with dehybridization leading to the release of the host mole-
cules®. The increase in temperature resulting from the surface plas-
mon resonance of gold on NIR irradiation may also cause a phase
transition in polymers or lipids, allowing the leakage of a preloaded
drug. Accordingly, poly(lactic-co-glycolic acid) (PLGA) nanoparti-
cles (glass transition temperature of 45 °C) entirely or half coated
with a gold layer®, gold-shell-coated lipidic nanomicelles®, pol-
ymer-coated gold nanocages® or gold nanorods combined with
thermosensitive liposomes®” have been designed, and some have
shown significant antitumour activity in experimental models of
breast cancer® and glioma®. Also, overheating gold nanoparticles

Near-infrared light

Figure 4 | Examples of light-triggered drug delivery. a, Schematic representation of an encapsulated invitro transcription-translation liposomal system
triggered by irradiating caged DNA with light. b, Delivery of doxorubicin through the near-infrared-triggered induction of dehybridization of the DNA
conjugated at the surface of gold nanorods. Figure adapted with permission from: a, ref. 59, © 2012 ACS; b, ref. 62, © 2012 Wiley.
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with a short laser pulse in the NIR range can result in plasmonic
nanobubbles, which could be used in applications similar to those
of ultrasound-triggered drug delivery®.

Although promising from a conceptual point of view, the safety
and/or biodegradability of the typical materials used in light-
responsive nanoparticles for drug-delivery applications (Au-Ag,
gold nanorods, azobenzene and o-nitro benzyl derivatives) is
questionable. Finding biocompatible photosensitive materials will
therefore be a critical part in the potential clinical translation of
these systems.

Electroresponsive systems. Weak electric fields (typically about
1 V) can be used to achieve pulsed or sustained drug release
through a variety of actuation mechanisms. For instance, nanopar-
ticles based on polypyrrole — a conductive polymer — exhibited
tailored drug-release profiles as a result of a synergistic process
of electrochemical reduction-oxidation and electric-field-driven
movement of charged molecules®. Multiwalled carbon nanotubes
could be used as a conductive additive to increase the electrical sen-
sitivity of drug-delivery systems”. Montmorillonite, when formu-
lated in a chitosan nanohydrogel, finely tuned the drug release on
electrostimulation, and preserved responsiveness and reversibility
after consecutive on-off switching operations™. An electric field
also activated the reversible scission of supramolecular polymer-
somes that formed through host-guest complexation between the
end groups (P-cyclodextrin and ferrocene) of a pair of homopoly-
mers (one hydrophilic and one hydrophobic) (Fig. 5)72. Similarly,
an oxidizing voltage activated the splitting of a vesicle membrane
(composed of redox-responsive self-assembled amphiphilic rod-
coil tetraaniline-PEG) into smaller pucklike micelles, which could
reassemble on the application of a reductive voltage™.
Electroporation — the application of a (typically high) trans-
membrane voltage to cause the formation of pores in cell membranes
and thus increase their permeability to drugs — has been shown to
be an efficient pathway for electroresponsive drug delivery. In the
past few years, it has been applied to nucleic acid delivery against
cancer, either by using PEG-coated silica nanoparticles with oppo-
site polarities to enhance gene transfection’ or by using transfer-
rin-decorated liposomes loaded with exogenous oligonucleotides™.
Similarly, iontophoresis — which uses an electric field to enhance
the transdermal delivery of charged compounds — is a particularly
versatile approach. It has been recently applied to various types of
nanoscaled systems, including organic nanocarriers such as PLGA
nanoparticles loaded with estradiol’® and liposome-containing
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insulin”, as well as inorganic gold nanoparticles against traumatic
tendinitis’. Iontophoresis has also been applied to ocular delivery,
for instance in the transport of dexamethasone across the human
sclera with egg lecithin-taurocholate micelles as nanocarriers™.

Overall, electroresponsive systems offer significant freedom in
the design of the device that controls the electrical signal. However,
similar to other external stimuli, the low tissue penetration depth
and the need to avoid undesired tissue damage may restrict their
application in therapy.

Endogenous stimuli-responsive drug delivery

In this section we discuss systems that take advantage of variations
in pH, redox potential, or the concentrations of enzymes or
specific analytes.

pH-sensitive systems. pH variations have been exploited to control
the delivery of drugs in specific organs (such as the gastrointesti-
nal tract or the vagina) or intracellular compartments (such as
endosomes or lysosomes), as well as to trigger the release of the
drug when subtle environmental changes are associated with
pathological situations, such as cancer or inflammation. Two main
strategies exist: the use of polymers (polyacids or polybases) with
ionizable groups that undergo conformational and/or solubility
changes in response to environmental pH variation; and the design
of polymeric systems with acid-sensitive bonds whose cleavage ena-
bles the release of molecules anchored at the polymer backbone,
the modification of the charge of the polymer or the exposure of
targeting ligands.

There exists a plethora of anticancer drug-delivery systems
that have taken advantage of the slight difference of pH existing
between healthy tissues (~7.4) and the extracellular environment
of solid tumours (6.5-7.2). This is mainly a consequence of irreg-
ular angiogenesis in fast-growing tumours, which causes a rapid
deficit of both nutrients and oxygen and thus a shift towards a gly-
colytic metabolism, therefore leading to the production of acidic
metabolites in the tumour interstitium. Hence, efficient pH-sensi-
tive systems must give a sharp response to a subtle change of pH in
the tumour extracellular microenvironment. For example, chitosan
swelling induced on amino-group protonation (pK, ~6.3) leads to
the release of encapsulated tumour necrosis factor alpha (TNFa)
in the local acidic environment of tumour tissues®. Sudden dis-
assembly at pH 6.4-6.8 of PEG-poly(f-amino ester) micelles
triggered the leakage of entrapped campthotecin®. pH-mediated
triggered delivery of proteins into ischemic areas was achieved

PS-B-CD-PEO-Fc

Orthogonal § l ' ‘ ’. AR AR
_

131 nm

Self-assembly
in water

\ Loaded molecules

Figure 5 | Voltage-responsive vesicles. Structure of polystyrene-B-cyclodextrin (PS-B-CD) and poly(ethylene oxide)-ferrocene (PEO-Fc), and
representation of the voltage-responsive controlled assembly and disassembly of PS-B-CD-PEO-Fc supramolecular vesicles. Figure reproduced with

permission from ref. 72, © 2010 ACS.

9296

NATURE MATERIALS | VOL 12 | NOVEMBER 2013 | www.nature.com/naturematerials

© 2013 Macmillan Publishers Limited. All rights reserved


http://www.nature.com/doifinder/10.1038/nmat3776
http://www.nature.com/doifinder/10.1038/nmat3776

NATURE MATERIALS boi:10.1038/NMAT3776

INSIGHT | REVIEW ARTICLES

with piperidine- and imidazole-modified PEG-poly(B-amino
ester) micelles®.

A change of pH has also been exploited to tune CPP display
at the surface of nanocarriers to promote cell internalization.
Polyhistidine-based micelles could respond to acidic tumour
microenvironments by efficient exposure of the transactivating
regulatory protein (TAT) sequence (Fig. 6a)®, and TAT-peptide-
decorated liposomes comprising an acidic hydrolyzable PEG
shell allowed improved exposure of the TAT sequence at low pH
(Fig. 6b)*. Other targeting strategies involved the uncaging of an
exposed ligand by hydrolysis of acid-labile groups®, and the pro-
tonation of titratable ligand-functionalized lipids with consequent
lipid-bilayer reorganization and ligand exposure®. Cell internaliza-
tion can also be promoted by means of pH-triggered surface-charge
reversal from negative or neutral to positive®.

Bacterial infections are generally characterized by very low pH
values because of anaerobic fermentation and subsequent inflam-
mation. In this regard, systemic antibiotic therapy was achieved
by incorporating an ionizable polyhistidine segment in a block
copolymer to make PLGA-b-polyhistidine-b-PEG triblock copoly-
mer nanoparticles. A charge switch at the sites of localized acidity
promoted interactions with the negatively charged bacterial wall,
and led to increased nanoparticle uptake in both Gram-positive
and Gram-negative bacteria®.

Because of the broad range of pH found throughout the gastro-
intestinal tract, pH-responsive systems for oral drug delivery have
been designed to protect drugs from the harsh conditions found
in the gastric cavity and to improve their absorption in the intes-
tine®. For instance, poly(methacrylic acid)-based copolymers have
been used as pH-sensitive coatings at the surface of porous silica
nanoparticles®, as well as to prepare copolymer micelles able to
disassemble at the intestinal pH®'. This charge-reversal approach
was also applied to MSNPs to achieve drug release at neutral pH
by taking advantage of electrostatic interactions®, and to chitosan
nanoparticles for gastric or intestinal delivery®.

At the cellular level, the acidification of endosomes (pH ~5-6)
and their fusion with lysosomes (pH ~4-5) is another pH gradi-
ent that can be used for effective intracellular drug accumulation.
Nanoparticles that expand in response to a mildly acidic pH to afford
rapid release of their contents have been conceived either by mask-
ing the hydroxyl groups in the polymer backbone with acid-labile
protecting groups® or by using protonable dimethylaminoethyl
methacrylate monomer units. This led to tunable swelling and DNA
release kinetics within the endosomal pH range®. Alternatively, the
presence of acid-sensitive bonds in the polymer backbone (such
as hydrazone®, oxime” or acetals®) or the use of acid-degradable
crosslinkers” can lead to nanocarrier disassembly. pH-sensitive
bonds also enabled the release of drugs covalently conjugated to
polymer backbones®”*, protein scaffolds'®, MSNP pores'’ and
nanoparticles derived from the particle replication in nonwetting
templates (PRINT) process'®. MSNPs with p-cyclodextrin nano-
valves are also responsive to endosomal acidification'®. As bacteria
are located in acidic intracellular compartments, pH responsiveness
was also used in the treatment of resistant intracellular infections
by means of intralysosomal release of penicillin'®. Drug release can
also be mediated by physical destabilization due to a hydrophobic-
hydrophilic transition combined with hydrogen bond breaking'®
or by acidic etching of MSNP pores'®.

The low pH values and high enzymatic content of lysosomes can
be harmful to many therapeutic molecules. Therefore, substantial
effort has been directed towards the design of systems able to escape
the endosomal compartment by exploiting the so-called proton
sponge effect (by which an increase in osmotic pressure leads to
lysosomal swelling and rupture). To this end, copolymers made of
amine-containing polymers (such as poly-L-lysine'”’, poly(B-amino
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Figure 6 | pH-sensitive nanocarriers for efficient TAT-peptide exposure.

a, Polyhistidine (PHis)-based micelles responding to acidic tumour
microenvironments by an efficient TAT-sequence exposure following
ionization of the polyhistidine segments. b, TAT-peptide-decorated
liposomes comprising a hydrolyzable PEG shell allowing improved exposure
of the TAT sequence at low pH. Figure adapted with permission from:

a, ref. 83, © 2008 Elsevier; b, ref. 84, © 2012 Elsevier.

esters)'%, polyhistidine'® or poly(y-benzyl-L-glutamate)''?) have
been widely used to buffer the endosomal-lysosomal pH. For
example, the introduction of a protonable polyhistidine segment
endowed a virus-mimetic nanogel with endosomal disruption and
multiple cell-infection abilities''!. Lipid-coated poly(p-amino ester)
nanoparticles combined endosomal escape and mRNA delivery
together with efficient in vivo transfection after intranasal admin-
istration''?. The charge-reversal behaviour of chitosan has also
been exploited for pH-triggered drug release'*. However, because
of the low buffering effect of chitosan and its derivatives, compl-
exation with membrane-destabilizing polyelectrolytes was needed
to enhance the endosomolytic potential and siRNA release'.
We should note that pH-sensitive nanodevices inducing disrup-
tion of the lysosomal membranes may cause leakage of lysosomal
enzymes into the cell cytoplasm, potentially leading to autophagy
and cell death.

pH-sensitive liposomes are generally formulated with 1,2-diole-
oyl-sn-glycero-3-phoshoethanolamine (DOPE) or 1,2-dipalmitoyl-
sn-glycero-3-phosphoethanolamine, which undergo a transition
from a lamellar phase to a fusogenic hexagonal phase at acidic
pH!">!¢ The conjugation of DOPE to low-molecular-weight PEI
significantly improved gene and siRNA delivery through a com-
bination of fusogenicity and buffering properties'’. Positively
charged and PEG-protected liposomes were used to facilitate the
interaction with the endosomal membrane'®. Alternatively, pH
sensitivity can be conferred by using anchored' or caging'* pol-
ymer chains that undergo a phase transition in lysosomal acidic
environments, thus causing lipid-membrane destabilization and
cargo release.

Redox-sensitive systems. Disulphide bonds, prone to rapid cleav-
age by glutathione (GSH), can be used to attain redox sensitivity.
The cytosolic release of drugs can then be triggered by the differ-
ent concentrations of GSH found in extracellular (~2-10 uM) and
intracellular (~2-10 mM) compartments, and in tumour tissues
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Figure 7 | Enzyme-sensitive drug delivery. a, Multifunctional liposomal nanocarrier responsive to matrix metalloproteinases (MMP2) for drug delivery via
TAT-mediated internalization. mAB 2C5; nucleosome-specific monoclonal antibody 2C5. b, On-demand drug delivery triggered by bacterial lipase. Figure
adapted with permission from: a, ref. 137, © 2012 ACS; b, ref. 146, © 2012 ACS.

compared with healthy ones. This has been achieved by reductively
degradable micelles from self-assembled amphiphilic copolymers
containing disulphide links within the hydrophobic backbone'*!
or bearing a single disulphide bond at the connection of the two
polymer blocks'?*'%. Other routes used GSH-sensitive crosslink-
ing agents incorporated either in the shell'’* or in the core'* of the
micelles, leading to rapid micelle disassembly followed by specific
intracellular release of hydrophobic drugs. Redox-sensitive systems
can also use capped mesoporous materials'*®, dendrimer-drug con-
jugates containing thiol-cleavable bonds'?, liposomes built from a
quinone-lipid conjugate'®® or disulphide crosslinked nanogels'?.

Complexation of nucleic acids with a reducible cationic
polymer (such as poly(disulphide amine)'®, disulphide-containing
poly(amido amine)™" or histidine-containing polycations'**) can
improve transfection or gene silencing compared with non-redox
sensitive analogues as a result of the quick disassembly of the com-
plexes under reductive intracellular conditions. For example, PEG-
based polyplex micelles that can shed the surrounding PEG chains
in response to a reducing environment allowed to fully recover the
cytosolic-release properties of the polycation thus leading to sig-
nificant in vivo gene silencing'®. Other drug-delivery systems syn-
thesized through disulphide linkages are siRNA-grafted polymers'*
and multimerized siRNA'.

Oxidation responsiveness was also explored for triggered drug
release in inflammatory tissues, which are characterized by an accu-
mulation of reactive oxygen species. For example, thioketal-based
nanoparticles formulated with a reactive oxygen species-sensitive
polymer exhibited the capability of specific TNFa-siRNA delivery
to the sites of intestinal inflammation, thus providing therapeutic
levels of gene silencing after oral administration'*.

It is noteworthy that Mylotrag, a redox-responsive anti-CD33
antibody-linked drug developed by Celltech and approved by
the Food and Drug Administration of the United States for acute
myelogenous leukemia, failed to confirm benefits to patients and
was withdrawn from the market. This illustrates the difficulties of
drug-release control by a specific redox molecular mechanism in a
complex biological environment.

Enzyme-sensitive systems. The altered expression profile of spe-
cific enzymes (such as proteases, phospoholipases or glycosidases)
observed in pathological conditions, such as cancer or inflamma-
tion, can be exploited to achieve enzyme-mediated drug release
with accumulation of drugs at the desired biological target. Most
of the systems devoted to enzyme-mediated drug delivery exploited
the presence of enzymes in the extracellular environment. Recent
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studies reported the use of short peptide sequences, cleavable by
matrix metalloproteinases, as linkers between surface PEG chains
and either TAT-functionalized liposomes (Fig. 7a)"*’ or CPP-
decorated, dextran-coated iron oxide nanoparticles'*. After cleav-
age of the PEG shell in the tumour microenvironment, surface
bioactive ligands became exposed, and this enhanced intracellular
penetration compared with nanocarriers without cleavable link-
ers. Using this approach, systemic administration of siRNA-loaded
nanoparticles resulted in an almost 70% gene-silencing activity
in tumour-bearing mice'”. Similarly, protease-sensitive polymer
coatings or lipopeptides were designed to achieve triggered release
from porous silica nanoparticles' or liposomes'*'.

It is also possible to deliver drugs to intracellular compart-
ments by using enzymes. For instance, mesoporous silica scaf-
folds grafted with polysaccharide derivatives enabled the specific
delivery of doxorubicin after lysosomal enzyme-mediated cleavage
of the glycoside bonds and reduction of the polysaccharide chain
lengths'**. Similarly, lysosomal enzyme cathepsine B, overexpressed
in several malignant tumours, enabled cargo release by means of
fast enzymatic degradation of polymersomes'. Transgene expres-
sion with high cell specificity has been achieved through polymer-
based delivery systems bearing a cationic peptide as substrate of
intracellular proteases (or kinases) that are exclusively expressed in
cells infected with human immunodeficiency virus'* or inflamed
cells'. The enzyme-mediated disintegration of the polymer-DNA
electrostatic interaction promoted gene release and transcription.

Enzyme responsiveness can be extended to bacterial-infection
treatments. For example, on-demand release of antibiotics, achieved
with vancomycin-releasing lipase-sensitive nanogels (Fig. 7b)",
significantly inhibited the growth of Staphylococcus aureus and was
also effective in killing intracellular bacteria.

These representative examples highlight the potential of enzyme-
triggered drug delivery. However, work is still needed to obtain pre-
cise information of the target enzyme levels at the desired site to
fine-control cell uptake and to demonstrate that in vivo drug release
is correlated to enzymatic activity.

Self-regulated systems. Systems capable of responding to changes
in the concentration of specific analytes are able to achieve self-reg-
ulated drug delivery. This is particularly important in the non-inva-
sive management of diabetes, which requires a system that triggers
the release of insulin according to blood-glucose levels. A commonly
used strategy to design glucose-responsive systems takes advantage
of the ability of phenylboronic acid (PBA) and its derivatives to
combine reversibly with cis-diol units. The equilibrium in aqueous
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solution between neutral (hydrophobic) and charged (hydrophilic)
PBA is shifted towards the latter when charged PBA complexes with
glucose, resulting in the swelling of PBA-containing polymers. This
was exploited to activate the release of insulin from poly(ethylene
glycol)-b-poly(acrylic  acid-co-acrylamidophenylboronic  acid)
micelles'” and poly(ethylene glycol)-b-poly(styrene boroxole) poly-
mersomes'. However, responsiveness required elevated glucose
concentrations (up to 50 mg ml™), far from physiological conditions
(I-3 mg ml™). Greater glucose sensitivity was obtained either by
rearrangement of the polymer structure through the introduction of
non-responsive solubilizing groups'®, the replacement of PBA by a
boronate ester with lower pK, (ref. 150) or the introduction of carbo-
hydrate molecules as pendant groups on the copolymer backbone''.
When carbohydrate molecules are introduced, the interaction of
PBA with the glycopolymer is weakened in the presence of glucose,
which leads to matrix swelling and insulin release. Responsiveness
under physiological glucose conditions can also be achieved with
polypeptide-based micelles'** and PBA-functionalized MSNPs'*.

The enzymatic reaction between glucose and glucose oxidase,
which results in the production of gluconic acid and hydrogen
peroxide, can also confer glucose responsiveness to pH-sensitive
systems containing glucose oxidase. For example, sustained release
of insulin was mediated by the pH-dependent loosening of a
crosslinked glucose oxidase multilayer deposited onto MSNPs'*.

Despite the promising proofs of concept, strong clinical evi-
dence of the feasibility of self-regulated insulin delivery has not yet
been achieved.

Multistimuli-responsive drug delivery

Sensitivity to more than one stimulus can even further improve
drug delivery. Here, we only discuss systems that respond to simul-
taneously applied stimuli.

Because of the coexistence of a pH gradient and an oxidative
environment in certain pathological conditions, in certain cases pH
and redox responsiveness can be used in combination. For exam-
ple, conjugation of antisense-bcl2 oligonucleotides and doxorubicin
to a four-arm PEG with acid-cleavable and redox-reducible link-
ers resulted in efficient cancer cell apoptosis'®. A redox-sensitive

Table 1| Stimuli-responsive drug-delivery systems in clinical trials.

crosslinked interlayer embedded in pH-sensitive polypeptidic
micelles triggered nanocarrier disassembly and a burst of doxoru-
bicin release in a reductant-rich environment, resulting in an in vivo
improvement of the therapeutic efficacy of the loaded drug'®.
Improved drug-release activation by dual responsiveness to pH and
temperature has been shown for ionically self-assembled nanoparti-
cles” and liposomes'*. Light-sensitivity can also be associated with
pH responsiveness by exploiting the resonance surface properties of
palladium and silver'®. Other systems have shown response to tem-
perature and magnetic field for methotrexate delivery to skeletal
muscle'®, to light and reducing environment to control the release
kinetic from block copolymer micelles'®, and to ultrasounds and
enzymes to enhance drug release from bubble liposomes'®.

Despite the advantageous versatility of these systems, they often
appear as too complicated and many still remain as proofs of con-
cept. To ascertain the viability of these strategies, evidence of the
regulation of the response to each stimulus would be needed both
in vitro and in vivo.

Clinical status of stimuli-responsive nanodevices
The translation of stimuli-responsive drug-delivery systems
from the bench to the bedside is not straightforward. This can be
explained by their usually sophisticated designs, which makes the
potential pharmaceutical development more complex, especially
in terms of the manufacturing process, reproducibility and qual-
ity control. Also, nontrivial optimizations and improvements are
often required for the translation of each stimulus from preclinical
experimental models to daily clinical practice. In particular, endog-
enous triggers are indeed difficult to control because they may vary
from one patient to another (such as the pH of a tumour or the
presence of reducing agents in the blood circulation). Although
systems responsive to external stimuli are, from this point of view,
more promising, major improvements would be needed to improve
both tissue-penetration depth and focusing (to avoid damage to
healthy tissues).

This may explain why the two stimuli-responsive nanosystems
that have reached the clinical stage (Table 1) are only responsive
to exogenous stimuli. They are the thermosensitive liposomes

Stimulus Nanocarrier Drug (trade name) Targets Clinical status Reference’
Temperature Liposomes Doxorubicin (ThermoDox)  Unresectable hepatocellular Phaselll, the HEAT study NCT00617981
carcinoma
Recurrent chest-wall breast cancer Phasell, the DIGNITY study NCT00826085
Colorectal liver metastases Phasell, the ABLATE study NCT01464593
Painful bone metastases, Phasell NCTO01640847
breast carcinoma,
non-small-cell lung cancer,
small-cell lung cancer,
adenocarcinoma
Bone metastases, pancreatic cancer,  Phasel http://celsion.com/

metastatic liver cancer

docs/pipeline_overview

Magnetic Magnetic fluid ~ NanoTherm AS1, MagForce Glioblastoma European Union regulatory  http://www.magforce.
MFL AS1 Nanotechnologies approval de/en/studien.html
Iron-oxide Prostate and pancreatic carcinoma Phasel http://www.magforce.
magnetite de/en/studien.html
I[ronand carbon  Doxorubicin/MTC—DOX Unresectable hepatocellular Phase Il and Phase Il NCT00034333
particles carcinoma
Hepatocellular carcinoma Phasel and Phasell NCT00054951
Cancer metastatic to the liver Phaseland Phasell NCT00041808
*ClinicalTrials.gov identifiers are given if available; Clinical Trials.gov
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ThermoDox, which are at present in clinical trials for the treatment
of breast cancer (phase II) and hepatocellular carcinoma (phase III),
and the iron oxide NanoTherm, which has been approved for the
treatment of glioblastoma. Although clinical trials for ThermoDox
have been recently suspended because the life span increase has
not reached the threshold of 33%, these trials have demonstrated
the safety profile of this formulation, which was well tolerated by
patients. For the iron oxide-based MTC-DOX (magnetic target
carrier-doxorubicin; developed by FeRX), which entered phase II
and IIT clinical trials for the treatment of liver cancer and unresect-
able hepatocellular carcinoma, respectively, no more data have been
published since 2005.

Outlook

Systems for drug delivery are often decorated with a specific ligand
for disease recognition. However, for most targeting systems, less
than ~5% of the injected dose is able to reach the tumour site or the
infected or inflamed tissues. The consensus is that both the struc-
tural heterogeneity of the biological targets and the limited acces-
sibility of the target cells are detrimental for drug targeting (often
because of a combination of an exaggerate desmoplastic reaction,
an excessive interstitial pressure and a poor status of endothelial
blood vessels). Also, the enhanced permeability and retention
effect, widely observed in preclinical investigations, is unlikely to be
translated to the clinic.

In this context, the design of nanocarriers sensitive to exogenous
or endogenous stimuli may represent an attractive alternative to
targeted drug delivery. The wide range of stimuli able to trigger the
drug release at the right place and time, and the diversity of respon-
sive materials that can be assembled in different architectures,
allow great flexibility in the design of stimuli-responsive systems.
However, although in vitro proofs of concept have been reported
for a number of stimuli-responsive systems, only a few have been
tested in in vivo preclinical models, and very few (thermosensitive
liposomes and iron oxide nanoparticles) have reached the clinical
stage. For most of these systems, the complexity of their architec-
tural design and difficulties in the scaling-up of their synthesis are
likely to hamper their translation from the bench to the bedside.
Moreover, their toxicity is multifactorial, depending on composi-
tion, physicochemical properties, route of administration and dose.
The benefit-to-risk ratio has therefore to be balanced according to
the intended medical application. Unfortunately, many available
stimuli-responsive systems have limited chances of reaching the
clinic because of absence of degradability or insufficient biocom-
patibility. The ability of these systems to be sensitive to discrete vari-
ations of pH, temperature or redox potential is not straightforward
to achieve, and issues related to the penetration depth of the exter-
nally applied stimulus would eventually need to be solved.

It is difficult to pinpoint which stimuli-responsive nanosystems
have the best chances of reaching the clinic. The medical applica-
tions of most of the systems that we have discussed in this Review
correspond to either therapeutic niches, or to orphan diseases that
are resistant to already available treatments or for which no thera-
peutic alternative exists. As a general rule, the simpler and easier the
development of a system is, the better its chances of reaching the
clinic. The thermosensitive liposomes ThermoDox, already in the
clinical phase, are a good example.

As we have shown in this Review, immense progress in materials
chemistry and drug delivery has led to the design of smart stimuli-
responsive concepts using well-engineered nanosystems. Perhaps
the focus should now shift towards clinically acceptable systems
that are more sensitive to discrete variations in specific stimuli.
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