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Advanced nanoscale systems for drug delivery have recently 
received tremendous attention, in particular from the field 
of nanomedicine. The need for drug nanocarriers that effi-

ciently target diseased areas in the body arises because drug efficacy 
is often altered by nonspecific cell and tissue biodistribution, and 
because some drugs are rapidly metabolized or excreted from the 
body. Owing to impressive progress in materials science and phar-
maceutics, a broad range of nanocarriers with diverse sizes, archi-
tectures and surface properties have been designed. These include 
liposomes, polymer nanoparticles, micelles, dendrimers, and 
inorganic nanoparticles made of iron oxide, quantum dots, gold 
or metal oxide frameworks. The size of these carriers is typically 
small (from a few tenths to a few hundreds of nanometres) to allow 
systemic (intravenous) or local (mucosal) administration, and to 
promote their diffusion within the cell. Moreover, current surface-
functionalization methodologies can impart nanocarriers with the 
ability to control, at least in part, their pharmacokinetics and bio-
distribution. For example, the PEGylation (the process of attach-
ing polyethylene glycol (PEG) chains)-induced steric repulsion 
of blood opsonins — molecules, such as antibodies, that enhance 
phagocytosis — endows the nanocarriers with in  vivo longevity 
and specific capability of extravasation through the endothelium 
of inflammatory tissues (the so-called enhanced permeability and 
retention effect), whereas their functionalization with biologically 
active ligands facilitates the targeting of specific cells.

Nanotechnology-based targeted delivery has shown promis-
ing results in preclinical animal models. However, the translation 
of both the enhanced permeability and retention effect and ligand 
recognition into the clinic still remains questionable. This may be, 
to a certain extent, a consequence of the stochastic nature of ligand–
receptor interactions and of difficulties in the control of the release 
of the drug from targeting nanocarriers. In fact, Fickian diffusion — 
which governs the leakage of the drug — is not specific to cells, 
tissues or organs; therefore, more efficient delivery strategies are 
needed. One alternative involves on-demand processes (also termed 
‘switch on/off ’), which in principle allow for tailored release profiles 
with excellent spatial, temporal and dosage control. On-demand 
drug delivery is becoming feasible through the design of stimuli-
responsive systems that recognize their microenvironment and 
react in a dynamic way, mimicking the responsiveness of living 
organisms. However, this approach is rather complex. It requires 
the use of biocompatible materials that are able to undergo a spe-
cific protonation, a hydrolytic cleavage, or a molecular or supramo-
lecular conformational change in response to a desired stimulus, 
or that are susceptible to specific physical stimulation. The concept 
of stimuli-responsive drug delivery was first suggested in the late 
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1970s with the use of thermosensitive liposomes for the local release 
of drugs through hyperthermia1. Since then — and particularly in 
the past decade — a great deal of research has been carried out on 
stimuli-responsive materials for drug delivery, especially concern-
ing their design and application as nanocarriers.

Nanoscale stimuli-responsive devices may be sensitive to spe-
cific endogenous stimuli, such as a lowered interstitial pH, a higher 
glutathione concentration or an increased level of certain enzymes 
such as matrix metalloproteinases. At the cellular level, pH sensitiv-
ity can either trigger the release of the transported drug into late 
endosomes or lysosomes, or promote the escape of the nanocarriers 
from the lysosomes to the cell cytoplasm. At the tissue level, one can 
take advantage of specific microenvironmental changes associated 
with neoplastic diseases (the treatment of which is the focus of most 
of the research effort on stimuli-responsive nanocarriers) as well 
as pathological situations such as ischemia, inflammatory diseases 
or infections. Extracorporeal physical stimuli can be also applied. 
For example, the targeted delivery of pharmacologically active mol-
ecules to a diseased area in the body can be magnetically guided 
by using ultrasmall iron oxide-based nanoparticles. Sustained drug 
release can also be achieved by thermo-, light- or ultrasound-sensi-
tive nanoparticulate systems. Furthermore, the possibility of choos-
ing between different routes of administration (intravenous, oral, 
ocular or mucosal) is attractive.

In this Review, we discuss the most significant progress made in 
the past five years in the field of stimuli-responsive drug-delivery 
nanocarriers. In the interest of brevity, we do not include stimuli-
sensitive transported drugs, or single prodrugs or nanocarriers for 
which drug-release evidence has yet to be reported.

Exogenous stimuli-responsive drug delivery
In this section we discuss drug-delivery systems that take advantage 
of externally applied stimuli, including temperature changes, mag-
netic fields, ultrasounds, light and electric fields.

Thermoresponsive systems. Thermoresponsive drug delivery is 
among the most investigated stimuli-responsive strategies, and has 
been widely explored in oncology. Thermoresponsiveness is usu-
ally governed by a nonlinear sharp change in the properties of at 
least one component of the nanocarrier material with temperature. 
Such a sharp response triggers the release of the drug following 
a variation in the surrounding temperature. Ideally, thermosen-
sitive nanocarriers should retain their load at body temperature 
(~37  °C), and rapidly deliver the drug within a locally heated 
tumour (~40–42 °C) to counteract rapid blood-passage time and 
washout from the tumour.
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Thermoresponsive systems are generally liposomes, or polymer 
micelles or nanoparticles (usually poly(N-isopropyl acryla-
mide), PNIPAM) that exhibit a lower critical solution tempera-
ture. For liposomes, thermoresponsiveness usually arises from 
a phase transition of the constituent lipids and the associated 
conformational variations in the lipid bilayers. In vivo, heat is gen-
erally applied by using temperature-controlled water sacks, radiof-
requency oscillators or miniature annular-phased array microwave 
applicators. In the past few years, the focus has been on rapid and 
quantitative drug-release performance. Thermosensitive liposomes 
(TSLs) are perhaps the most advanced thermoresponsive nanosys-
tems, as shown by their use in several clinical trials. Doxorubicin-
loaded TSLs (ThermoDox, Celsion Corporation), in association 
with hyperthermia or radiofrequency ablation, are at present being 
investigated in phase II trials for the treatment of breast cancer and 
colorectal liver metastasis, and reached phase III trials for the treat-
ment of hepatocellular carcinoma. More recently, improved liposo-
mal formulations have been shown to release their loads shortly after 
the onset of hyperthermia (~40–45 °C)2. An alternative approach 
used leucine zipper peptide–liposome hybrids, which combine 
the advantages of traditional TSLs with the dissociative, unfolding 
properties of a temperature-sensitive peptide (Fig. 1a)3. Also prom-
ising are thermoresponsive bubble-generating liposomal systems. 
These rely on the creation of permeable defects in the lipid bilayer by 
means of the generation of carbon dioxide bubbles through decom-
position of ammonium bicarbonate at mild hyperthermia (~42 °C). 

Interestingly, because of the hyperechogenic features of carbon 
dioxide bubbles, bubble-generating liposomal vesicles that rapidly 
release doxorubicin (Fig. 1b)4 also improved ultrasound imaging of 
tissues. Thermosensitive liposomes can also be functionalized with 
ligands for specific targeting, such as the human epidermal growth 
factor receptor 2 affibody for breast-cancer treatment5.

Although PNIPAM is the preferred polymer building block for 
thermosensitive polymeric drug nanocarriers6, other polymeric 
materials, such as poly(γ-2-(2-(2-methoxyethoxy)-ethoxy)ethoxy-
ε-caprolactone)-b-poly(γ-octyloxy-ε-caprolactone)7, have demon-
strated marked transition temperatures, allowing improved drug 
release at low hyperthermia (40 °C). Importantly, tuning the nature 
and the composition of the copolymers so that transition tempera-
tures are close to body temperature may be useful for local admin-
istration (either subcutaneous, or intra- or peritumoural).

Local hyperthermia has also been used as a stimulus for the 
on–off control of the activity of cell-penetrating peptides (CPP). In 
this case, the temperature-triggered assembly of diblock-copolymer 
elastin-like polypeptides allowed arginine residues to be displayed 
at the periphery of the resulting micelles. This resulted in a greater 
than 8-fold increase in HeLa-cell uptake8.

Thermoresponsiveness can also occur on a brief temperature 
decrease (also called cold shock or cryotherapy). In this case, a 
thermally reversible swelling or de-swelling of the nanocarrier 
leads to free diffusion of the encapsulated drugs as a consequence of 
increased porosity. For example, Pluronic F127–polyethyleneimine 
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Figure 1 | Temperature-based actuation mechanisms for liposomal drug delivery. a, The temperature-triggered unfolding of a leucine zipper peptide 
inserted in the membrane of a doxorubicin (Dox)-carrying liposome opens a channel through which the drug is released. b, Drug-permeable pores can 
also be created by the temperature-triggered generation of bubbles from the decomposition of encapsulated ammonium bicarbonate. Figure adapted with 
permission from: a, ref. 3, © 2012 ACS; b, ref. 4, © 2013 ACS. 
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(PEI) nanocapsules were used for efficient small interfering RNA 
(siRNA) delivery into the cytosol and subsequent silencing of a 
target messenger RNA9.

In general, the challenge in the design of thermoresponsive 
nanodevices lies in the use of materials that are both safe and sen-
sitive enough to respond to slight temperature changes around 
the physiological temperature of 37  °C. Liposomal systems are at 
present the more advanced and thus have the highest potential for 
clinical applications.

Magnetically responsive systems. The advantage of using a mag-
netic field relies on the different nature that the magnetic response 
can take, which can be a magnetic guidance under a permanent 
magnetic field, a temperature increase when an alternating mag-
netic field is applied, or both when alternately used. Therefore, 
magnetically responsive systems allow for diversity in the drug-
delivery pathway. Furthermore, there is the possibility of per-
forming magnetic resonance imaging, and hence to associate 
diagnostics and therapy within a single system (the so-called thera-
nostic approach)10.

Magnetic guidance is typically obtained by focusing an extracor-
poreal magnetic field on the biological target during the injection 
of a magnetically responsive nanocarrier. This concept has dem-
onstrated great potential in experimental cancer therapy because 
of improved drug accumulation inside solid-tumour models. 
Candidate nanosystems for such a therapeutic approach are core–
shell nanoparticles (a magnetic core made of magnetite (Fe3O4) 
coated with silica or polymer)11,12, magnetoliposomes (Fe3O4 or 
maghemite (Fe2O3) nanocrystals encapsulated in liposomes)13 and 
porous metallic nanocapsules14. Most core–shell nanoparticles have 
shown promising results in vitro, yet only some of them have dem-
onstrated improved tumour accumulation and anticancer phar-
macological efficacy in various in  vivo models. However, without 
normalized benchmark experiments, the comparison between all 
these systems remains rather difficult.

To avoid limitations related to physical drug entrapment (for 
instance, uncontrolled burst release or poor drug loading), the drugs 
and the nanocarriers can be covalently linked12,15. For example, 
Fe3O4 nanocrystals loaded into squalene–gemcitabine conjugate 
nanoassemblies exhibiting high drug payloads have demonstrated 
absence of burst release, enhancement of the magnetic resonance 
imaging contrast in the targeted L1210 solid-tumour nodule and 
significant therapeutic efficacy15.

Interestingly, a permanent magnetic field can also trigger drug 
delivery. For instance, when applied to a ferrogel composed of 
Pluronic-F127 micelles encapsulating superparamagnetic iron 
oxide nanoparticles and a hydrophobic drug, the drug is released 
as iron oxide nanoparticles approach each other and squeeze the 
micelles16. Similarly, a syringe-like system using magnetic nanopar-
ticles can push the drug out of a biodegradable reservoir based on 
poly(l-lactic acid)17.

Magnetically guided nanocarriers have also found applica-
tion in the delivery of nucleic acids, including siRNA and genes. 
Such magnetofection experiments are generally performed using 
nanoassemblies with cationic coatings to condense nucleic acids, 
which results in higher transfection efficiencies under a permanent 
magnetic field. For instance, this technique led to improved effec-
tiveness in the transfection of siRNA in vitro and/or in vivo when 
directed against prostate18 and breast19 cancers, as well as in the 
gene transfer to oligodendrocyte precursors for neural repair20. For 
DNA vaccine delivery, two different strategies have been successful: 
the complexation of plasmid DNA (pDNA) at the surface of PEI-
coated Fe3O4 nanoparticles21, and the use of bacterial magnetic par-
ticles as carriers of a recombinant DNA22. Magnetic vaccines have 
also been demonstrated in the form of magnetic-nanoparticle for-
mulations associated to a replication-defective adenovirus23. Cell-
based gene therapies employing human monocytes — cells that 
naturally migrate from the bloodstream into tumours — that were 
transfected with therapeutic genes, loaded with magnetic nanopar-
ticles and placed under the influence of a magnetic field led to a 
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marked increase in the monocytes’ extravasation into the tumour24. 
Magnetic nanoparticles have also been used for the delivery of anti-
oxidant enzymes (catalase and superoxide dismutase, for example) 
with the aim of increasing resistance to oxidative stress in vitro25.

When magnetic nanoparticles are placed in an oscillating or 
alternating magnetic field (AMF), because of hysteresis loss and/or 
Néel relaxation, they serve as a transducer by generating heat in the 
surrounding medium; therefore, they have been extensively used 
for the selective heating of tumours (hyperthermia). However, by 
combining this phenomenon with the particular physical and/or 
chemical properties of organic and inorganic nanocarriers, a broad 
range of actuation mechanisms for on-demand drug release has 
been developed. Typical examples are the use of thermosensitive 
polymers26 and lipids27, which can serve as coating materials for 
magnetic nanoparticles and trigger the release of a drug in an on–off 
fashion in response to a magnetically induced increase of tempera-
ture. This can also be achieved with crosslinked PNIPAM hydrogels 
loaded with Fe3O4 nanoparticles28. The release of the encapsulated 
drug can be modulated by the duration of the AMF on–off states, 
which affects the shrinkage of the mesh size and the recovery of 
the gel. The heat generated by an AMF can also trigger nanocarrier 
structural alteration, such as shell or bilayer porosity increase29,30, 
disintegration of the Fe3O4 core31, or single-crystal nanoshell lattice 
deformation32. Furthermore, active targeting by means of nano-
carrier functionalization can be combined with hyperthermia to 
achieve a synergistic cytotoxic effect33.

The heat generated by an AMF can also be used to achieve on-
demand pulsatile drug release. Examples include: pseudorotaxane-
based nanovalves at the surface of mesoporous silica nanoparticles 
(MSNPs) that act as thermally sensitive gatekeepers (Fig. 2a)34; com-
posite membranes containing thermoresponsive PNIPAM-based 
nanogels and magnetic nanoparticles that enable on–off drug deliv-
ery on de-swelling or swelling of the polymer35; a capping system 
for drug-loaded MSNPs based on complementary DNA sequences 
(Fig.  2b)36; and a nucleic-acid duplex as a heat-labile linker that 
releases a drug from dextran-coated Fe3O4 magnetic nanoparticles 
embedded into a matrigel plug37. An AMF can also remotely regu-
late protein production by using a modified temperature-sensitive 
channel (TRPV1) decorated with iron oxide nanoparticles38. When 
the local temperature rises, TRPV1 gates calcium to stimulate the 
production and release of bioengineered insulin driven by a Ca2+-
sensitive promoter.

The use of magnetically responsive nanoparticles, either for mag-
netic guidance or local hyperthermia, is generally limited to acces-
sible tumour nodules, but not metastasis or disseminated tumours. 

Even if most of these tumours are indications for direct surgery, 
some are not surgically removable because they are too haemor-
rhagic or localized in tissues with high risk of healthy-tissue injury 
(as is the case for some brain cancers). In these situations, magneti-
cally responsive nanoparticles represent a promising therapeutic 
option. However, magnetic guidance is hampered by the complex-
ity involved in the set-up of external magnetic fields, which need 
adequate focusing and deep penetration into the tissues to reach 
the diseased area with sufficient strength. In this respect, efforts to 
identify the best magnetic and irradiation technologies are needed.

Ultrasound-triggered drug delivery. Ultrasounds represent an 
effective method for attaining spatiotemporal control of drug 
release at the desired site, thus preventing harmful side effects to 
healthy tissues. The use of ultrasounds is also appealing because of 
their non-invasiveness, the absence of ionizing radiations, and the 
facile regulation of tissue penetration depth by tuning frequency, 
duty cycles and time of exposure.

Ultrasound waves can trigger the release of the drug from a vari-
ety of nanocarriers through the thermal and/or mechanical effects 
generated by cavitation phenomena or radiation forces. Indeed, it 
has been shown that physical forces associated with cavitation can 
induce nanocarrier destabilization, drug release39 and transient 
increase in vessel permeability, leading to the cellular uptake of 
therapeutic molecules40.

The cavitation threshold is easily achieved when low ultrasound 
frequencies (in the kHz range) are used. However, ultrasound-
mediated enhancement of vessel permeability can also be the cause 
of possible drawbacks such as metastatic dissemination. Therefore, 
microbubbles or other ultrasound contrast agents, which are able 
to efficiently interact with ultrasonic waves, have been used at diag-
nostic frequencies to reduce the threshold required for cavitation. 
However, short lifespan and absence of extravasation may still limit 
the use of microbubbles for tissue targeting. This difficulty has been 
overcome by the development of perfluorocarbon (PFC) nanoemul-
sions that convert into microbubbles under the action of therapeu-
tic ultrasounds. The bubbles are formed through acoustic droplet 
vaporization and are subjected to cavitation, thus promoting cel-
lular uptake and/or release of the entrapped drugs in the tumour 
site (Fig. 3). This has resulted in significant therapeutic efficacy and 
suppression of metastatic dissemination41. Moreover, functionaliza-
tion with aptamers has increased the targeting specificity of PFC 
nanodroplets42. Low-frequency ultrasounds have also been used to 
promote the delivery of drugs through the skin. For example, high 
penetration of siRNA-loaded liposomes has led to significant inhi-
bition of the progression of melanocytic lesions43.

Furthermore, echogenic liposomes — also termed bubble 
liposomes — contain air pockets or nanoemulsions of liquid PFC44 
and can integrate ultrasound responsiveness into a drug nanocar-
rier. In fact, a combination of ultrasounds and intravenous admin-
istration of xenon-loaded bubble liposomes achieved a significant 
neuroprotective effect in a model of cerebral ischemia45. Bubble 
liposomes increased the transfection efficiency of pDNA-loaded 
liposomes, probably also by enhancing ultrasound-mediated 
endosomal escape46. However, co-localization of pDNA and bub-
ble liposomes is needed in vivo to attain high transfection efficacy. 
Indeed, intravenous administration of bubble liposomes loaded 
with the basic fibroblast growth factor gene resulted in significant 
gene delivery at the ultrasound-focused site47. Systemic administra-
tion of pDNA-loaded bubble liposomes and ultrasound exposure 
also achieved prolonged cancer vaccination48. Compared with other 
approaches, ultrasound-triggered drug delivery allows the drug to 
be released into the cytosol as a result of pore formation in the cell 
membrane, thus bypassing the degradative endocytotic pathway. 
This is especially useful in DNA transfection.

Droplet

Microbubble

Cancer cells

Ultrasounds

Drug

PEG
Drug-loaded

polymer coating

Liquid PFC

PFC gas

Figure 3 | Drug delivery from echogenic perfluorocarbon (PFC)-containing 
nanoemulsions. It is believed that the mechanism of delivery involves a 
droplet-to-bubble transition under the action of ultrasound, leading to 
drug transfer from the bubbles to neighbouring cells. Figure adapted with 
permission from ref. 41, © 2009 Elsevier.
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Combination of thermosensitive drug carriers and high-intensity 
focused ultrasound (HIFU) enables triggered drug release with 
only a mild temperature increase. For instance, inducing the release 
of doxorubicin from TSLs by using a clinically available HIFU 
material resulted in higher drug accumulation in an experimental 
tumour animal model compared with non-irradiated controls49. 
The combination of HIFU and ThermoDox is under investigation 
at Celsion Corporation for the treatment of liver metastatic cancer, 
painful bone metastasis and pancreatic cancer.

Light-triggered drug delivery. Owing to their non-invasiveness 
and the possibility of remote spatiotemporal control, a large vari-
ety of photoresponsive systems has been engineered in the past 
few years to achieve on-demand drug release in response to illu-
mination of a specific wavelength (in the ultraviolet, visible or 
near-infrared (NIR) regions). The different strategies available rely 
on either a one-time or repeatable on–off drug-release event trig-
gered by photosensitiveness-induced structural modifications of 
the nanocarriers.

For instance, the ultraviolet–visible reversible photoisomeriza-
tion of the azobenzene group (and its derivatives) — from trans to 
cis on irradiation at 300–380 nm, and from cis to trans by shining 
light in the visible region — enables photoregulated control of drug 
release. This has been achieved through azobenzene functionali-
zation of the pore interior of MSNPs50, by means of azo-modified 
DNA valves at the pore mouth51, and by the light-controlled host–
guest recognition between a cyclodextrin cavity and azobenzene 
derivatives52. The hydrophobic–hydrophilic transition that accom-
panies the trans–cis photoisomerization can also be used. For 
example, the disassembly at ultraviolet light of 350 nm that occurs 
for cationic micelles of azo-modified surfactants can initiate rapid 
intracellular DNA release53. Another strategy for obtaining nano-
particles with photoswitchable drug release in illuminated cells is to 
take advantage of the ultraviolet light-triggered spiropyran–mero-
cyanine isomerization. Ultraviolet light can also activate revers-
ible shrinkage in spiropyran–PEGylated lipid nanoparticles, thus 
enabling deeper tissue penetration54. Furthermore, the photodi-
merization–cleavage cycle of thymine can serve as a mechanism 
for MSNP opening and closing55, although other photocleavable 
groups, such as o-nitro benzyl and its derivatives, have also been 
tested. Controlled drug release has been achieved with o-nitro ben-
zyl attached to gold nanoparticles as a linker for the direct conjuga-
tion of drugs56, as part of MSNP gatekeeper mechanisms57, and as a 

crosslinker incorporated in the backbone of polymers58. Photolabile 
caging groups have been exploited for the light-activated produc-
tion of proteins. Lipid vesicles loaded with caged DNA and with the 
reacting and enzymatic components needed for transcription and 
translation enabled, upon local ultraviolet irradiation-mediated 
DNA uncaging, the activation of green fluorescent protein and the 
synthesis of enzymatically active luciferase (Fig. 4a)59.

The major drawback of light-triggered drug delivery is the low 
penetration depth (~10  mm) that results from the strong scat-
tering properties of soft tissues in the ultraviolet–visible region 
of the spectrum (less than 700  nm). Conventional light-induced 
drug delivery is thus only applicable to regions of the body that 
can be directly illuminated (such as the eye or the skin). However, 
by using photosensitive groups that respond to higher wavelengths 
or exploiting two-photon technology60, it is possible to replace 
the ultraviolet–visible light source by a NIR laser (700–1,000 nm 
range) with deeper tissue penetration, lower scattering proper-
ties and minimal harm to tissues. This makes NIR-responsive 
systems extremely promising for clinical applications. The capac-
ity of NIR-absorbing plasmonic materials to convert the photon 
energy adsorbed during irradiation into heat has been used to 
trigger the release of chemotherapeutic molecules from NIR-
responsive nanodevices. For instance, doxorubicin-loaded hollow 
gold nanospheres showed accelerated drug release when irradiated 
at 808 nm, allowing enhanced anticancer activity and reduced sys-
temic toxicity compared with the free-drug treatment61. Light-to-
heat transduction mediated by NIR irradiation of gold nanorods 
caused a rapid rise in the local temperature, which was exploited 
to induce dehybridization of DNA helices conjugated at the gold 
surface, allowing the release of doxorubicin molecules bound to 
consecutive cytosine–guanine base pairs (Fig. 4b)62. Alternatively, 
DNA duplexes can be used to cap the pores of a mesoporous silica 
shell, with dehybridization leading to the release of the host mole-
cules63. The increase in temperature resulting from the surface plas-
mon resonance of gold on NIR irradiation may also cause a phase 
transition in polymers or lipids, allowing the leakage of a preloaded 
drug. Accordingly, poly(lactic-co-glycolic acid) (PLGA) nanoparti-
cles (glass transition temperature of 45 °C) entirely or half coated 
with a gold layer60,64, gold-shell-coated lipidic nanomicelles65, pol-
ymer-coated gold nanocages66 or gold nanorods  combined with 
thermosensitive liposomes67 have been designed, and some have 
shown significant antitumour activity in experimental models of 
breast cancer64 and glioma67. Also, overheating gold nanoparticles 
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Figure 4 | Examples of light-triggered drug delivery. a, Schematic representation of an encapsulated in vitro transcription–translation liposomal system 
triggered by irradiating caged DNA with light. b, Delivery of doxorubicin through the near-infrared-triggered induction of dehybridization of the DNA 
conjugated at the surface of gold nanorods. Figure adapted with permission from: a, ref. 59, © 2012 ACS; b, ref. 62, © 2012 Wiley.
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with a short laser pulse in the NIR range can result in plasmonic 
nanobubbles, which could be used in applications similar to those 
of ultrasound-triggered drug delivery68.

Although promising from a conceptual point of view, the safety 
and/or biodegradability of the typical materials used in light-
responsive nanoparticles for drug-delivery applications (Au–Ag, 
gold nanorods, azobenzene and o-nitro benzyl derivatives) is 
questionable. Finding biocompatible photosensitive materials will 
therefore be a critical part in the potential clinical translation of 
these systems.

Electroresponsive systems. Weak electric fields (typically about 
1  V) can be used to achieve pulsed or sustained drug release 
through a variety of actuation mechanisms. For instance, nanopar-
ticles based on polypyrrole — a conductive polymer — exhibited 
tailored drug-release profiles as a result of a synergistic process 
of electrochemical reduction–oxidation and electric-field-driven 
movement of charged molecules69. Multiwalled carbon nanotubes 
could be used as a conductive additive to increase the electrical sen-
sitivity of drug-delivery systems70. Montmorillonite, when formu-
lated in a chitosan nanohydrogel, finely tuned the drug release on 
electrostimulation, and preserved responsiveness and reversibility 
after consecutive on–off switching operations71. An electric field 
also activated the reversible scission of supramolecular polymer-
somes that formed through host–guest complexation between the 
end groups (β-cyclodextrin and ferrocene) of a pair of homopoly-
mers (one hydrophilic and one hydrophobic) (Fig. 5)72. Similarly, 
an oxidizing voltage activated the splitting of a vesicle membrane 
(composed of redox-responsive self-assembled amphiphilic rod–
coil tetraaniline-PEG) into smaller pucklike micelles, which could 
reassemble on the application of a reductive voltage73.

Electroporation — the application of a (typically high) trans-
membrane voltage to cause the formation of pores in cell membranes 
and thus increase their permeability to drugs — has been shown to 
be an efficient pathway for electroresponsive drug delivery. In the 
past few years, it has been applied to nucleic acid delivery against 
cancer, either by using PEG-coated silica nanoparticles with oppo-
site polarities to enhance gene transfection74 or by using transfer-
rin-decorated liposomes loaded with exogenous oligonucleotides75. 
Similarly, iontophoresis — which uses an electric field to enhance 
the transdermal delivery of charged compounds — is a particularly 
versatile approach. It has been recently applied to various types of 
nanoscaled systems, including organic nanocarriers such as PLGA 
nanoparticles loaded with estradiol76 and liposome-containing 

insulin77, as well as inorganic gold nanoparticles against traumatic 
tendinitis78. Iontophoresis has also been applied to ocular delivery, 
for instance in the transport of dexamethasone across the human 
sclera with egg lecithin–taurocholate micelles as nanocarriers79.

Overall, electroresponsive systems offer significant freedom in 
the design of the device that controls the electrical signal. However, 
similar to other external stimuli, the low tissue penetration depth 
and the need to avoid undesired tissue damage may restrict their 
application in therapy.

Endogenous stimuli-responsive drug delivery
In this section we discuss systems that take advantage of variations 
in pH, redox potential, or the concentrations of enzymes or 
specific analytes.

pH-sensitive systems. pH variations have been exploited to control 
the delivery of drugs in specific organs (such as the gastrointesti-
nal tract or the vagina) or intracellular compartments (such as 
endosomes or lysosomes), as well as to trigger the release of the 
drug when subtle environmental changes are associated with 
pathological situations, such as cancer or inflammation. Two main 
strategies exist: the use of polymers (polyacids or polybases) with 
ionizable groups that undergo conformational and/or solubility 
changes in response to environmental pH variation; and the design 
of polymeric systems with acid-sensitive bonds whose cleavage ena-
bles the release of molecules anchored at the polymer backbone, 
the modification of the charge of the polymer or the exposure of 
targeting ligands.

There exists a plethora of anticancer drug-delivery systems 
that have taken advantage of the slight difference of pH existing 
between healthy tissues (~7.4) and the extracellular environment 
of solid tumours (6.5–7.2). This is mainly a consequence of irreg-
ular angiogenesis in fast-growing tumours, which causes a rapid 
deficit of both nutrients and oxygen and thus a shift towards a gly-
colytic metabolism, therefore leading to the production of acidic 
metabolites in the tumour interstitium. Hence, efficient pH-sensi-
tive systems must give a sharp response to a subtle change of pH in 
the tumour extracellular microenvironment. For example, chitosan 
swelling induced on amino-group protonation (pKa ~6.3) leads to 
the release of encapsulated tumour necrosis factor alpha (TNFα) 
in the local acidic environment of tumour tissues80. Sudden dis-
assembly at pH  6.4–6.8  of PEG–poly(β-amino ester) micelles 
triggered the leakage of entrapped campthotecin81. pH-mediated 
triggered delivery of proteins into ischemic areas was achieved 
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Figure 5 | Voltage-responsive vesicles. Structure of polystyrene-β-cyclodextrin (PS-β-CD) and poly(ethylene oxide)-ferrocene (PEO-Fc), and 
representation of the voltage-responsive controlled assembly and disassembly of PS-β-CD–PEO-Fc supramolecular vesicles. Figure reproduced with 
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with piperidine- and imidazole-modified PEG–poly(β-amino 
ester) micelles82.

A change of pH has also been exploited to tune CPP display 
at the surface of nanocarriers to promote cell internalization. 
Polyhistidine-based micelles could respond to acidic tumour 
microenvironments by efficient exposure of the transactivating 
regulatory protein (TAT) sequence (Fig.  6a)83, and TAT-peptide-
decorated liposomes comprising an acidic hydrolyzable PEG 
shell allowed improved exposure of the TAT sequence at low pH 
(Fig. 6b)84. Other targeting strategies involved the uncaging of an 
exposed ligand by hydrolysis of acid-labile groups85, and the pro-
tonation of titratable ligand-functionalized lipids with consequent 
lipid-bilayer reorganization and ligand exposure86. Cell internaliza-
tion can also be promoted by means of pH-triggered surface-charge 
reversal from negative or neutral to positive87.

Bacterial infections are generally characterized by very low pH 
values because of anaerobic fermentation and subsequent inflam-
mation. In this regard, systemic antibiotic therapy was achieved 
by incorporating an ionizable polyhistidine segment in a block 
copolymer to make PLGA-b-polyhistidine-b-PEG triblock copoly-
mer nanoparticles. A charge switch at the sites of localized acidity 
promoted interactions with the negatively charged bacterial wall, 
and led to increased nanoparticle uptake in both Gram-positive 
and Gram-negative bacteria88.

Because of the broad range of pH found throughout the gastro-
intestinal tract, pH-responsive systems for oral drug delivery have 
been designed to protect drugs from the harsh conditions found 
in the gastric cavity and to improve their absorption in the intes-
tine89. For instance, poly(methacrylic acid)-based copolymers have 
been used as pH-sensitive coatings at the surface of porous silica 
nanoparticles90, as well as to prepare copolymer micelles able to 
disassemble at the intestinal pH91. This charge-reversal approach 
was also applied to MSNPs to achieve drug release at neutral pH 
by taking advantage of electrostatic interactions92, and to chitosan 
nanoparticles for gastric or intestinal delivery93.

At the cellular level, the acidification of endosomes (pH ~5–6) 
and their fusion with lysosomes (pH ~4–5) is another pH gradi-
ent that can be used for effective intracellular drug accumulation. 
Nanoparticles that expand in response to a mildly acidic pH to afford 
rapid release of their contents have been conceived either by mask-
ing the hydroxyl groups in the polymer backbone with acid-labile 
protecting groups94 or by using protonable dimethylaminoethyl 
methacrylate monomer units. This led to tunable swelling and DNA 
release kinetics within the endosomal pH range95. Alternatively, the 
presence of acid-sensitive bonds in the polymer backbone (such 
as hydrazone96, oxime97 or acetals98) or the use of acid-degradable 
crosslinkers99 can lead to nanocarrier disassembly. pH-sensitive 
bonds also enabled the release of drugs covalently conjugated to 
polymer backbones87,96, protein scaffolds100, MSNP pores101 and 
nanoparticles derived from the particle replication in nonwetting 
templates (PRINT) process102. MSNPs with β-cyclodextrin nano-
valves are also responsive to endosomal acidification103. As bacteria 
are located in acidic intracellular compartments, pH responsiveness 
was also used in the treatment of resistant intracellular infections 
by means of intralysosomal release of penicillin104. Drug release can 
also be mediated by physical destabilization due to a hydrophobic–
hydrophilic transition combined with hydrogen bond breaking105 
or by acidic etching of MSNP pores106.

The low pH values and high enzymatic content of lysosomes can 
be harmful to many therapeutic molecules. Therefore, substantial 
effort has been directed towards the design of systems able to escape 
the endosomal compartment by exploiting the so-called proton 
sponge effect (by which an increase in osmotic pressure leads to 
lysosomal swelling and rupture). To this end, copolymers made of 
amine-containing polymers (such as poly-l-lysine107, poly(β-amino 

esters)108, polyhistidine109 or poly(γ-benzyl-l-glutamate)110) have 
been widely used to buffer the endosomal–lysosomal pH. For 
example, the introduction of a protonable polyhistidine segment 
endowed a virus-mimetic nanogel with endosomal disruption and 
multiple cell-infection abilities111. Lipid-coated poly(β-amino ester) 
nanoparticles combined endosomal escape and mRNA delivery 
together with efficient in vivo transfection after intranasal admin-
istration112. The charge-reversal behaviour of chitosan has also 
been exploited for pH-triggered drug release113. However, because 
of the low buffering effect of chitosan and its derivatives, compl-
exation with membrane-destabilizing polyelectrolytes was needed 
to enhance the endosomolytic potential and siRNA release114. 
We should note that pH-sensitive nanodevices inducing disrup-
tion of the lysosomal membranes may cause leakage of lysosomal 
enzymes into the cell cytoplasm, potentially leading to autophagy 
and cell death.

pH-sensitive liposomes are generally formulated with 1,2-diole-
oyl-sn-glycero-3-phoshoethanolamine (DOPE) or 1,2-dipalmitoyl-
sn-glycero-3-phosphoethanolamine, which undergo a transition 
from a lamellar phase to a fusogenic hexagonal phase at acidic 
pH115,116. The conjugation of DOPE to low-molecular-weight PEI 
significantly improved gene and siRNA delivery through a com-
bination of fusogenicity and buffering properties117. Positively 
charged and PEG-protected liposomes were used to facilitate the 
interaction with the endosomal membrane118. Alternatively, pH 
sensitivity can be conferred by using anchored119 or caging120 pol-
ymer chains that undergo a phase transition in lysosomal acidic 
environments, thus causing lipid-membrane destabilization and 
cargo release.

Redox-sensitive systems. Disulphide bonds, prone to rapid cleav-
age by glutathione (GSH), can be used to attain redox sensitivity. 
The cytosolic release of drugs can then be triggered by the differ-
ent concentrations of GSH found in extracellular (~2–10 μM) and 
intracellular (~2–10  mM) compartments, and in tumour tissues 
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compared with healthy ones. This has been achieved by reductively 
degradable micelles from self-assembled amphiphilic copolymers 
containing disulphide links within the hydrophobic backbone121 
or bearing a single disulphide bond at the connection of the two 
polymer blocks122,123. Other routes used GSH-sensitive crosslink-
ing agents incorporated either in the shell124 or in the core125 of the 
micelles, leading to rapid micelle disassembly followed by specific 
intracellular release of hydrophobic drugs. Redox-sensitive systems 
can also use capped mesoporous materials126, dendrimer–drug con-
jugates containing thiol-cleavable bonds127, liposomes built from a 
quinone-lipid conjugate128 or disulphide crosslinked nanogels129.

Complexation of nucleic acids with a reducible cationic 
polymer (such as poly(disulphide amine)130, disulphide-containing 
poly(amido amine)131 or histidine-containing polycations132) can 
improve transfection or gene silencing compared with non-redox 
sensitive analogues as a result of the quick disassembly of the com-
plexes under reductive intracellular conditions. For example, PEG-
based polyplex micelles that can shed the surrounding PEG chains 
in response to a reducing environment allowed to fully recover the 
cytosolic-release properties of the polycation thus leading to sig-
nificant in vivo gene silencing133. Other drug-delivery systems syn-
thesized through disulphide linkages are siRNA-grafted polymers134 
and multimerized siRNA135.

Oxidation responsiveness was also explored for triggered drug 
release in inflammatory tissues, which are characterized by an accu-
mulation of reactive oxygen species. For example, thioketal-based 
nanoparticles formulated with a reactive oxygen species-sensitive 
polymer exhibited the capability of specific TNFα–siRNA delivery 
to the sites of intestinal inflammation, thus providing therapeutic 
levels of gene silencing after oral administration136.

It is noteworthy that Mylotrag, a redox-responsive anti-CD33 
antibody-linked drug developed by Celltech and approved by 
the Food and Drug Administration of the United States for acute 
myelogenous leukemia, failed to confirm benefits to patients and 
was withdrawn from the market. This illustrates the difficulties of 
drug-release control by a specific redox molecular mechanism in a 
complex biological environment.

Enzyme-sensitive systems. The altered expression profile of spe-
cific enzymes (such as proteases, phospoholipases or glycosidases) 
observed in pathological conditions, such as cancer or inflamma-
tion, can be exploited to achieve enzyme-mediated drug release 
with accumulation of drugs at the desired biological target. Most 
of the systems devoted to enzyme-mediated drug delivery exploited 
the presence of enzymes in the extracellular environment. Recent 

studies reported the use of short peptide sequences, cleavable by 
matrix metalloproteinases, as linkers between surface PEG chains 
and either TAT-functionalized liposomes (Fig.  7a)137 or CPP-
decorated, dextran-coated iron oxide nanoparticles138. After cleav-
age of the PEG shell in the tumour microenvironment, surface 
bioactive ligands became exposed, and this enhanced intracellular 
penetration compared with nanocarriers without cleavable link-
ers. Using this approach, systemic administration of siRNA-loaded 
nanoparticles resulted in an almost 70% gene-silencing activity 
in tumour-bearing mice139. Similarly, protease-sensitive polymer 
coatings or lipopeptides were designed to achieve triggered release 
from porous silica nanoparticles140 or liposomes141.

It is also possible to deliver drugs to intracellular compart-
ments by using enzymes. For instance, mesoporous silica scaf-
folds grafted with polysaccharide derivatives enabled the specific 
delivery of doxorubicin after lysosomal enzyme-mediated cleavage 
of the glycoside bonds and reduction of the polysaccharide chain 
lengths142. Similarly, lysosomal enzyme cathepsine B, overexpressed 
in several malignant tumours, enabled cargo release by means of 
fast enzymatic degradation of polymersomes143. Transgene expres-
sion with high cell specificity has been achieved through polymer-
based delivery systems bearing a cationic peptide as substrate of 
intracellular proteases (or kinases) that are exclusively expressed in 
cells infected with human immunodeficiency virus144 or inflamed 
cells145. The enzyme-mediated disintegration of the polymer–DNA 
electrostatic interaction promoted gene release and transcription.

Enzyme responsiveness can be extended to bacterial-infection 
treatments. For example, on-demand release of antibiotics, achieved 
with vancomycin-releasing lipase-sensitive nanogels (Fig.  7b)146, 
significantly inhibited the growth of Staphylococcus aureus and was 
also effective in killing intracellular bacteria.

These representative examples highlight the potential of enzyme-
triggered drug delivery. However, work is still needed to obtain pre-
cise information of the target enzyme levels at the desired site to 
fine-control cell uptake and to demonstrate that in vivo drug release 
is correlated to enzymatic activity.

Self-regulated systems. Systems capable of responding to changes 
in the concentration of specific analytes are able to achieve self-reg-
ulated drug delivery. This is particularly important in the non-inva-
sive management of diabetes, which requires a system that triggers 
the release of insulin according to blood-glucose levels. A commonly 
used strategy to design glucose-responsive systems takes advantage 
of the ability of phenylboronic acid (PBA) and its derivatives to 
combine reversibly with cis-diol units. The equilibrium in aqueous 
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solution between neutral (hydrophobic) and charged (hydrophilic) 
PBA is shifted towards the latter when charged PBA complexes with 
glucose, resulting in the swelling of PBA-containing polymers. This 
was exploited to activate the release of insulin from poly(ethylene 
glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) 
micelles147 and poly(ethylene glycol)-b-poly(styrene boroxole) poly-
mersomes148. However, responsiveness required elevated glucose 
concentrations (up to 50 mg ml–1), far from physiological conditions 
(1–3  mg ml–1). Greater glucose sensitivity was obtained either by 
rearrangement of the polymer structure through the introduction of 
non-responsive solubilizing groups149, the replacement of PBA by a 
boronate ester with lower pKa (ref. 150) or the introduction of carbo-
hydrate molecules as pendant groups on the copolymer backbone151. 
When carbohydrate molecules are introduced, the interaction of 
PBA with the glycopolymer is weakened in the presence of glucose, 
which leads to matrix swelling and insulin release. Responsiveness 
under physiological glucose conditions can also be achieved with 
polypeptide-based micelles152 and PBA-functionalized MSNPs153.

The enzymatic reaction between glucose and glucose oxidase, 
which results in the production of gluconic acid and hydrogen 
peroxide, can also confer glucose responsiveness to pH-sensitive 
systems containing glucose oxidase. For example, sustained release 
of insulin was mediated by the pH-dependent loosening of a 
crosslinked glucose oxidase multilayer deposited onto MSNPs154.

Despite the promising proofs of concept, strong clinical evi-
dence of the feasibility of self-regulated insulin delivery has not yet 
been achieved.

Multistimuli-responsive drug delivery
Sensitivity to more than one stimulus can even further improve 
drug delivery. Here, we only discuss systems that respond to simul-
taneously applied stimuli.

Because of the coexistence of a pH gradient and an oxidative 
environment in certain pathological conditions, in certain cases pH 
and redox responsiveness can be used in combination. For exam-
ple, conjugation of antisense-bcl2 oligonucleotides and doxorubicin 
to a four-arm PEG with acid-cleavable and redox-reducible link-
ers resulted in efficient cancer cell apoptosis155. A redox-sensitive 

crosslinked interlayer embedded in pH-sensitive polypeptidic 
micelles triggered nanocarrier disassembly and a burst of doxoru-
bicin release in a reductant-rich environment, resulting in an in vivo 
improvement of the therapeutic efficacy of the loaded drug156. 
Improved drug-release activation by dual responsiveness to pH and 
temperature has been shown for ionically self-assembled nanoparti-
cles157 and liposomes158. Light-sensitivity can also be associated with 
pH responsiveness by exploiting the resonance surface properties of 
palladium and silver159. Other systems have shown response to tem-
perature and magnetic field for methotrexate delivery to skeletal 
muscle160, to light and reducing environment to control the release 
kinetic from block copolymer micelles161, and to ultrasounds and 
enzymes to enhance drug release from bubble liposomes162.

Despite the advantageous versatility of these systems, they often 
appear as too complicated and many still remain as proofs of con-
cept. To ascertain the viability of these strategies, evidence of the 
regulation of the response to each stimulus would be needed both 
in vitro and in vivo.

Clinical status of stimuli-responsive nanodevices
The translation of stimuli-responsive drug-delivery systems 
from the bench to the bedside is not straightforward. This can be 
explained by their usually sophisticated designs, which makes the 
potential pharmaceutical development more complex, especially 
in terms of the manufacturing process, reproducibility and qual-
ity control. Also, nontrivial optimizations and improvements are 
often required for the translation of each stimulus from preclinical 
experimental models to daily clinical practice. In particular, endog-
enous triggers are indeed difficult to control because they may vary 
from one patient to another (such as the pH of a tumour or the 
presence of reducing agents in the blood circulation). Although 
systems responsive to external stimuli are, from this point of view, 
more promising, major improvements would be needed to improve 
both tissue-penetration depth and focusing (to avoid damage to 
healthy tissues).

This may explain why the two stimuli-responsive nanosystems 
that have reached the clinical stage (Table  1) are only responsive 
to exogenous stimuli. They are the thermosensitive liposomes 

Table 1 | Stimuli-responsive drug-delivery systems in clinical trials.

Stimulus Nanocarrier Drug (trade name) Targets Clinical status Reference*

Temperature Liposomes Doxorubicin (ThermoDox) Unresectable hepatocellular 
carcinoma

Phase III, the HEAT study NCT00617981

Recurrent chest-wall breast cancer Phase II, the DIGNITY study NCT00826085
Colorectal liver metastases Phase II, the ABLATE study NCT01464593
Painful bone metastases,
breast carcinoma,
non-small-cell lung cancer,
small-cell lung cancer,
adenocarcinoma

Phase II NCT01640847

Bone metastases, pancreatic cancer, 
metastatic liver cancer

Phase I http://celsion.com/
docs/pipeline_overview

Magnetic Magnetic fluid 
MFL AS1

NanoTherm AS1, MagForce 
Nanotechnologies

Glioblastoma European Union regulatory 
approval

http://www.magforce.
de/en/studien.html

Iron-oxide 
magnetite

Prostate and pancreatic carcinoma Phase I http://www.magforce.
de/en/studien.html

Iron and carbon 
particles

Doxorubicin/MTC–DOX Unresectable hepatocellular 
carcinoma

Phase II and Phase III NCT00034333

Hepatocellular carcinoma Phase I and Phase II NCT00054951
Cancer metastatic to the liver Phase I and Phase II NCT00041808

*ClinicalTrials.gov identifiers are given if available; ClinicalTrials.gov
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ThermoDox, which are at present in clinical trials for the treatment 
of breast cancer (phase II) and hepatocellular carcinoma (phase III), 
and the iron oxide NanoTherm, which has been approved for the 
treatment of glioblastoma. Although clinical trials for ThermoDox 
have been recently suspended because the life span increase has 
not reached the threshold of 33%, these trials have demonstrated 
the safety profile of this formulation, which was well tolerated by 
patients. For the iron oxide-based MTC–DOX (magnetic target 
carrier–doxorubicin; developed by FeRX), which entered phase II 
and III clinical trials for the treatment of liver cancer and unresect-
able hepatocellular carcinoma, respectively, no more data have been 
published since 2005.

Outlook
Systems for drug delivery are often decorated with a specific ligand 
for disease recognition. However, for most targeting systems, less 
than ~5% of the injected dose is able to reach the tumour site or the 
infected or inflamed tissues. The consensus is that both the struc-
tural heterogeneity of the biological targets and the limited acces-
sibility of the target cells are detrimental for drug targeting (often 
because of a combination of an exaggerate desmoplastic reaction, 
an excessive interstitial pressure and a poor status of endothelial 
blood vessels). Also, the enhanced permeability and retention 
effect, widely observed in preclinical investigations, is unlikely to be 
translated to the clinic.

In this context, the design of nanocarriers sensitive to exogenous 
or endogenous stimuli may represent an attractive alternative to 
targeted drug delivery. The wide range of stimuli able to trigger the 
drug release at the right place and time, and the diversity of respon-
sive materials that can be assembled in different architectures, 
allow great flexibility in the design of stimuli-responsive systems. 
However, although in vitro proofs of concept have been reported 
for a number of stimuli-responsive systems, only a few have been 
tested in in vivo preclinical models, and very few (thermosensitive 
liposomes and iron oxide nanoparticles) have reached the clinical 
stage. For most of these systems, the complexity of their architec-
tural design and difficulties in the scaling-up of their synthesis are 
likely to hamper their translation from the bench to the bedside. 
Moreover, their toxicity is multifactorial, depending on composi-
tion, physicochemical properties, route of administration and dose. 
The benefit-to-risk ratio has therefore to be balanced according to 
the intended medical application. Unfortunately, many available 
stimuli-responsive systems have limited chances of reaching the 
clinic because of absence of degradability or insufficient biocom-
patibility. The ability of these systems to be sensitive to discrete vari-
ations of pH, temperature or redox potential is not straightforward 
to achieve, and issues related to the penetration depth of the exter-
nally applied stimulus would eventually need to be solved.

It is difficult to pinpoint which stimuli-responsive nanosystems 
have the best chances of reaching the clinic. The medical applica-
tions of most of the systems that we have discussed in this Review 
correspond to either therapeutic niches, or to orphan diseases that 
are resistant to already available treatments or for which no thera-
peutic alternative exists. As a general rule, the simpler and easier the 
development of a system is, the better its chances of reaching the 
clinic. The thermosensitive liposomes ThermoDox, already in the 
clinical phase, are a good example.

As we have shown in this Review, immense progress in materials 
chemistry and drug delivery has led to the design of smart stimuli-
responsive concepts using well-engineered nanosystems. Perhaps 
the focus should now shift towards clinically acceptable systems 
that are more sensitive to discrete variations in specific stimuli.
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